matlab心形图大全,几个经典的函数图像,有趣的函数图像,matlab画图

Matlab 专栏收录该内容
26 篇文章 28 订阅

收藏几个经典的函数,用来当作数学优化方法求解的例子,再收藏几个有趣的函数图像。

 

 

一、平面心形图像

 

1. 笛卡尔心形函数

 

第一个当然是大名鼎鼎的笛卡尔心形函数,它的平面直角坐标系方程为:

\begin{equation}(x^2+y^2)^2+4ay(x^2+y^2)-4a^2x^2=0\end{equation}

 

其中 a 是一个可调参数,下面的图为 a=1 时的图像。

matlab 代码:

ezplot('(x^2+y^2)^2+4*2*x*(x^2+y^2)-4*2^2*y^2=0')

笛卡尔心形图比较像一个心脏的形状。

2 函数1

经过网上搜索,平面坐标系中,下面的函数最像普通的心形图像,而且函数形式简单,不需要分段。

 \begin{equation}x^2+(y-(x^2)^{1/3})^2=9 \end{equation}

改变右面的数值可以变化心形图像的大小,MATLAB 代码:

> ezplot('x^2+(y-(x^2)^(1/3))^2=9')

 

 

3. 函数2

还有一个函数:

                         \begin{equation}-x^2y^3+(x^2+y^2-1)^3=0\end{equation}

 

代码:

ezplot('-x^2*y^3+(x^2+y^2-1)^3=0',[-1.5,1.5])


 

 

4. 函数3

\begin{equation}17x^2-16|x|y+17y^2=200\end{equation}

 

代码:

ezplot('17*x.^2-16*abs(x).*y+17*y.^2=200'

 

5. 函数4

   \begin{align}f(x)&=\sqrt{2\sqrt{x^2}-x^2}\nonumber\\g(x)&=-2.14\sqrt{\sqrt{2}-\sqrt{|x|}}\nonumber\end{align}

代码:

x=linspace(-2,2,1000);
y1=sqrt(2*sqrt(x.^2)-x.^2);
y2=-2.14*sqrt(sqrt(2)-sqrt(abs(x)));
plot(x,y1,'b',x,y2,'b');
axis([-2.5,2.5,-3,1.5]);

 

6. 函数5

\begin{align}x&=16(sint)^3\nonumber\\y&=13cost-5cos(2t)-2cos(3t)-cos(4t)\nonumber\end{align}

 

 

t=linspace(-6,6,1000);
x=16*(sin(t)).^3;
y=13*cos(t)-5*cos(2*t)-2*cos(3*t)-cos(4*t);
plot(x,y);


 

 

 


二 . 立体心形图像

立体心形貌似只能由笛卡尔方程得到:

  \begin{equation}(x^2+ 9y^2/4 + z^2- 1)^3 - x^2z^3 - 9y^2z^3/80=0\end{equation}

画图时用 isosurface 和 patch  函数:

1. 图形1

 

f=@(x,y,z)(x.^2+ (9./4).*y.^2 + z.^2 - 1).^3 - x.^2.*z.^3 - (9./80).*y.^2.*z.^3;
[x,y,z]=meshgrid(linspace(-3,3));
val=f(x,y,z);
[p,v]=isosurface(x,y,z,val,0);
patch('faces',p,'vertices',v,'facevertexcdata',jet(size(v,1)),'facecolor','w','edgecolor','flat');
view(3);
grid on;
axis equal;

 


2. 图形2

 

f=@(x,y,z)(x.^2+ (9./4).*y.^2 + z.^2 - 1).^3 - x.^2.*z.^3 - (9./80).*y.^2.*z.^3;
[x,y,z]=meshgrid(linspace(-1.5,1.5));
val=f(x,y,z);
isosurface(x,y,z,val,0); 
axis equal;
view(3);
colormap([1 0.2 0.2])


 

 

 

 

 

 

3. 轴对称振荡器函数

    \begin{equation}f(x)=xsin(x)\end{equation}

 

 

ezplot('x*sin(x)')


 

 

 

4.  刚好有一个极大点,一个极小点的二元函数

   \begin{equation}f(x,y)=xe^{-x^{2}-y^{2}}\end{equation}

    

 

ezmesh(@(x,y) x.*exp(-x.^2-y.^2))


 

 

 

5. peaks 函数(二元高斯分布的概率密度函数)(三个极大点,三个极小点)

   \begin{equation}f(x,y)=3(1-x)^{2}e^{-x^2-(y+1)^2}-10(\frac{1}{5}x-x^3-y^5)e^{-x^2-y^2}-\frac{1}{3}e^{-(x+1)^2-y^2}\end{equation}

 

 f=@(x,y)3*(1-x).^2.*exp(-(x.^2) - (y+1).^2)- 10*(x/5 - x.^3 - y.^5).*exp(-x.^2-y.^2)- 1/3*exp(-(x+1).^2 - y.^2);
 ezmesh(f);

 

转载于个人公众号:Python 统计分析与数据科学

在这里插入图片描述


 

展开阅读全文
相关推荐
©️2020 CSDN 皮肤主题: 创作都市 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值