python 生成随机数的三种方法

1. 使用 random 包生成随机数

可以生成
均匀分布,
高斯分布,(包括正态分布)
指数分布,(与泊松分布有区别:泊松分布表示一段时间发生多少次,而指数分布表示两次发生的时间间隔)
贝塔分布,
韦布尔分布的随机数

由此可见,random 包支持的随机分布比较有限,功能较少.

例如:
(1) 生成 [1, 10] 内的均匀分布随机数

import random
random.uniform(1, 10)
Out[29]: 9.79867265758995

(2) 生成 [1, 10] 内的随机整数

random.randint(1, 10)
Out[30]: 2

(3) 生成一个正态分布的随机数,均值为 5, 标准差为 1

random.gauss(5, 1)
Out[32]: 4.933013260084848

(4) 生成一个指数分布的随机数,均值为 0.2

 random.expovariate(0.2)
Out[37]: 4.670169382329602

2. 使用 numpy 包生成随机数

numpy 包的 random 方法基本支持所有分布,并且能够一次生成多行多列的随机数.

例如:
(1) 生成 [1, 10] 内的均匀分布随机数, 2 行 2 列

import numpy as np
np.random.uniform(1, 10, [2,2])
Out[46]: 
array([[9.72571265, 9.37758659],
       [9.92487471, 9.37467146]])

(2) 生成 [1, 10] 内的随机整数, 2 行 2 列

np.random.randint(1, 10, [2,2])
Out[47]: 
array([[6, 6],
       [8, 7]])

(3) 生成一个正态分布的随机数,均值为 5, 标准差为 1, 2 行 2 列

np.random.normal(5, 1, [2,2])
Out[48]: 
array([[3.74927889, 5.75561821],
       [4.8353383 , 5.58410519]])

(4) 生成一个泊松分布的随机数,均值为 5, 2 行 2 列

np.random.poisson(5, [2,2])
Out[49]: 
array([[7, 3],
       [4, 7]])

(4) 生成一个指数分布的随机数,均值为 5, 2 行 2 列

np.random.exponential(5, [2,2])
Out[57]: 
array([[3.06834959, 2.70350511],
       [6.81427455, 2.91453029]])

3. 使用 scipy 包生成随机数

用 scipy 包不同分布函数自带的 rvs 生成随机数,例如,生成一个正态分布的 2 行 2 列随机数,均值为 5, 标准差为 1:

>>> import scipy.stats as st
>>> st.norm.rvs(loc=5, scale=1, size=[2,2])
array([[3.96964463, 4.14137383],
       [6.36342893, 3.99992325]])

生成一个指数分布的 2 行 2 列随机数,均值为 5:

>>> st.poisson.rvs(mu=5, size=[2,2])
array([[5, 7],
       [3, 9]])

转载于个人微信公众号:

Python 数据科学与数学建模
在这里插入图片描述

  • 21
    点赞
  • 2
    评论
  • 61
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

打赏
文章很值,打赏犒劳作者一下
相关推荐
©️2020 CSDN 皮肤主题: 创作都市 设计师:CSDN官方博客 返回首页

打赏

心态与做事习惯决定人生高度

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者